Wednesday, October 19, 2022

What diseases can vitamin B6 be used for?😡😡😡

In 1926, it was discovered that a lack of a vitamin in mice's diet caused them to induce pellagra. In 1934, a doctor discovered an ingredient that had therapeutic effects on dermatitis in mice and named it vitamin B6. It wasn't until around 1938-1939 that vitamin B6 could be isolated and synthesized. It is a water-soluble vitamin. Pyridoxamine, pyridoxal, and pyridoxine are the three forms of vitamin B6 found in food. The three of them can be transformed into each other. Since pyridoxine is photosensitizing, it gradually breaks down when exposed to light. There are many foods that contain vitamin B6. Meat, whole grain products (especially wheat), nuts and vegetables are rich in vitamin B6.

Pharmacological mechanism of action of vitamin B6.

Vitamin B6 is converted to pyridoxal phosphate in red blood cells. It is a coenzyme and plays a role in the synthesis or metabolism of some neuromediators, nucleic acids, DNA, vitamin B2, vitamin B12, lipids and proteins. In addition, it is also involved in the conversion of homocysteine to methionine. It also plays a role in the metabolism of sphingomyelin, steroids and glycogen.

Clinical application of vitamin B6.

1. Dermatology.

In dermatology, the clinical application of vitamin B6 is very extensive. When the human body lacks vitamin B6, seborrheic-like damage will appear in the eyes, nose and corners of the mouth. Patients also have stomatitis, glossitis, eczema or acne. Therefore, vitamin B6 is often used in the treatment of alopecia areata, androgenetic alopecia, acne, cheilitis, stomatitis, folliculitis, seborrheic dermatitis, and the like. Vitamin B6 is also used as adjunctive therapy for lupus erythematosus and vitiligo.

2. Neurology.

Peripheral neuritis is the clinical manifestation of vitamin B6 deficiency in the nervous system. It is accompanied by tenderness and swelling of synovial fluid (especially in the wrist). Convulsions, restlessness, excitement and vomiting are also clinical manifestations of vitamin B6 deficiency. Therefore, vitamin B6 is used in the adjuvant treatment of autism, epilepsy, drug-induced neuritis, peripheral neuritis, facial neuritis, cognitive impairment, tic disorder, tardive dyskinesia, hand-foot syndrome, and limb numbness. In addition, studies have pointed out that increasing the intake of vitamin B6 in the daily diet can help reduce the incidence of Parkinson's disease. This is because brain cells can be protected from damage by harmful substances such as free radicals by vitamin B6.

3. Gynecology.

For vomiting of pregnancy, vitamin B6 can play a role in reducing. The FDA approved the combined use of 75mg of vitamin B6, 12ug of vitamin B12, 1mg of folic acid, and 200mg of calcium to treat nausea and vomiting during pregnancy. Although efficacy is unclear, 50 to 100 mg of vitamin B6 daily can be used for premenstrual syndrome. However, daily use of more than 100 mg of vitamin B6 has not been shown to provide additional benefits and may also increase the risk of adverse effects. In addition, because vitamin B6 can pass through the placenta of pregnant women, if a woman takes a large amount of vitamin B6 during pregnancy, it can cause vitamin B6 dependence syndrome in newborns.

4. Cardiology.

Patients are at increased risk of dementia and stroke due to hyperhomocysteinemia. The use of 50 to 200 mg of vitamin B6 daily alone or in combination with 100 mg of vitamin B6, 1 mg of folic acid, and 1500 ΞΌg of vitamin B12 daily can reduce the level of hyperhomocysteinemia. However, long-term daily use of more than 1 mg of folic acid may increase the risk of cancers such as prostate and colorectal cancer.

5. Urology.

The most common type of urinary stones are calcium oxalate stones. Because vitamin B6 can reduce the production of oxalic acid, it can be used clinically for the prevention and treatment of urinary calculi.

6. Oncology.

Studies have pointed out that a lack of vitamin B6 may increase the risk of cancer. Although not confirmed by research, some experts believe that increasing the intake of vitamin B6 in the daily diet can reduce the risk of cancers such as esophageal, breast, stomach, pancreatic and colorectal cancers. In addition, high-dose vitamin B6 is also commonly used clinically to prevent hand-foot syndrome caused by capecitabine (an antineoplastic drug).

7. Other.

Neonatal hereditary vitamin B6-dependent syndrome, hereditary sideroblastic anemia, leukopenia, vascular restenosis, primary urinary hyperoxalate, metabolic disorders (eg, homocystinuria and cystathione) etheruria), anti-tremor paralysis, cerebral dysfunction syndrome, etc. can also use vitamin B6 as adjuvant therapy.

Adverse effects of vitamin B6.

Peripheral neuropathy such as limb numbness is the main adverse reaction of long-term or high-dose vitamin B6. It is manifested by an unsteady gait. Patients first experience numbness in the feet, then numbness in the hands, followed by severe impairment of vibration and distal position sensation in the extremities. It generally has less effect on pain, touch and temperature. Symptoms generally disappear when vitamin B6 is stopped. However, some patients on high doses of vitamin B6 experience irreversible symptoms. The patient's own disease and the adverse reactions of vitamin B6 are easily confused. Clinical use of vitamin B6 (especially when used in high doses) should closely monitor patients. Drowsiness, headache, nausea, and paresthesia are also common adverse effects of vitamin B6. In severe cases, it can also damage the function of organs. Anaphylactic shock may also occur in patients with intravenous use. In general, regular doses of vitamin B6 are relatively safe. However, long-term or high-dose use should pay attention to the occurrence of adverse reactions.

Monday, October 10, 2022

How to use nebulized medicine?πŸ’«πŸ’«πŸ’«

One of the important ways of treating respiratory diseases is aerosol inhalation therapy. One of the important means of treating respiratory diseases is aerosol inhalation therapy. Therefore, it is very important to understand the correct usage of nebulized drugs.

The process of inhaling a drug in the body.

Compared with administration methods such as injection or oral administration, the biggest advantage of aerosol inhalation administration is that the drug can be directly sent to the airway or lungs for local treatment. This advantage can make the drug less systemic adverse effects. The particle size of the aerosol inhalation drug is preferably 1 to 5 ΞΌm. If the particle size is larger than 5 ΞΌm, most of the drug will stay in the oropharynx and be swallowed into the body. If the particle size is less than 0.5 ΞΌm, although the drug can enter the alveoli and bronchioles, most of the drug will be excreted by exhalation.

Medication treatment of nebulized drugs.

Commonly used nebulized inhaled drugs are short-acting Ξ²-agonists (such as albuterol), short-acting anticholinergic drugs (such as ipratropium bromide), inhaled glucocorticoids (such as budesonide) and expectorants (such as ambroxol). 

Disease

Short-acting Ξ²-agonists

Short-acting anticholinergic drugs

Inhaled glucocorticoids

Expectorants

Acute exacerbation of bronchial asthma.

Use when necessary.

Long-term control of bronchial asthma.

Use when necessary.

Cough variant asthma.

Variant cough.

Eosinophilic bronchitis.

Use when necessary.

Asthmatic bronchitis.

Use when necessary.

Acute laryngotracheobronchitis.

Bronchiolitis obliterans.

Use when necessary.

Use when necessary.

Bronchiolitis.

Use when necessary.

Pneumonia.

Use when necessary.

Use when necessary.

Acute epiglottitis.

Pertussis or pertussis-like syndrome.

Use when necessary.

Use when necessary.

Bronchopulmonary dysplasia.

Bronchiectasis.

Use when necessary.

Use when necessary.

Endotracheal intubation or throat surgery.

Cough after infection.

Use when necessary.

 Commonly used nebulized drugs and their adverse reactions.

The nebulized drugs stay on the surface of the airway mucosa for a short time and have a short half-life in the blood, but have a long residence time in the local tissue.

  1. Short-acting Ξ²-agonists: Commonly used drugs are salbutamol and terbutaline. Their common adverse reactions were headache, tremor and tachycardia.
  2. Short-acting anticholinergic drugs: Commonly used drugs are ipratropium. Its common adverse reactions are headache, dizziness, dry mouth and vomiting.
  3. Inhaled glucocorticoids: Commonly used drugs are beclomethasone dipropionate, fluticasone propionate and budesonide. Their common adverse reactions are pharyngitis, hoarseness and oropharyngeal candidiasis.
  4. Expectorants: Commonly used drugs are acetylcysteine and ambroxol. Their common adverse reactions are stomatitis, oral numbness (ambroxol), disturbance of taste, nausea and vomiting.

What is the difference between inhaled glucocorticoids?

Commonly used drugs are beclomethasone dipropionate, fluticasone propionate and budesonide. Inhaled glucocorticoids have two mechanisms of action. The first is the genetic pathway. Their lipid solubility allows them to enter cells, where they bind to cytoplasmic receptors and then enter the nucleus. Once in the nucleus, they initiate gene transcription. It promotes anti-inflammatory protein synthesis and inhibits pro-inflammatory protein synthesis. They develop an anti-inflammatory effect after about a few hours. The second is the non-genetic pathway. They bind to hormone receptors on cell membranes. Cell energy metabolism and lysosomes are affected by it. They act as anti-inflammatory within minutes.

  1. Beclomethasone dipropionate: It is the only prodrug of the three glucocorticoids. Its elimination half-life is approximately 0.5 hours. It has the highest rates of oropharyngeal candida infections and pharyngitis of the three.
  2. Fluticasone propionate: It has better receptor affinity. Its stagnation time in the lungs is the shortest of the three. Its elimination half-life is approximately 8 hours. In addition, its inhibitory effect on the adrenal cortex is the strongest of the three.
  3. Budesonide: It has the best hydrophilicity. Its stagnation time in the lungs is the longest of the three. Its elimination half-life is approximately 3 hours.

What is the combined use of nebulized drugs?

Short-acting Ξ²-agonist and inhaled glucocorticoid act synergistically, so they are the most commonly used combination. Short-acting Ξ²-agonist and short-acting anticholinergic drug are also more commonly used in combination.

  1. Dual therapy: Short-acting Ξ²-agonist + short-acting anticholinergic drug, inhaled glucocorticoid + short-acting anticholinergic drug, acetylcysteine + short-acting Ξ²-agonist/short-acting anticholinergic drug/inhaled glucocorticoid.
  2. Triple therapy: Short-acting Ξ²-agonist + short-acting anticholinergic drug + inhaled glucocorticoid, short-acting Ξ²-agonist/short-acting anticholinergic drug + inhaled glucocorticoid + acetylcysteine.
  3. Quadruple Therapy: Short-acting Ξ²-agonist + short-acting anticholinergic drug + inhaled glucocorticoid + acetylcysteine.

The latest article ヽ( ・◇・)οΎ‰

What is the difference between azivudine, monogravir and nematvir/ritonavir?πŸ’«πŸ’«πŸ’«

Azivudine, monogravir and nematvir/ritonavir are all clinical drugs used to treat the new coronavirus. What's the difference between the...