Tuesday, July 19, 2022

What is heat apoplexy and its medical treatment?🌞🌞🌞

Summer is coming, and there have been hot weather in many places around the world recently. Some people even died of heat. In fact, hot weather has caused far more deaths around the world than many other natural disasters. With the recent hot weather, there have been news reports of people diagnosed with heat apoplexy and deaths. So what exactly is heat apoplexy? How should it be treated and what treatments are available?

What is heat apoplexy?

Heat apoplexy is a very severe form of heat stroke. It is caused by the body's thermoregulatory function being impaired by the high temperature and high humidity environment. The human body dissipates heat less than it produces heat. Its core temperature can quickly rise above 40oC. It will be accompanied by severe acute heat-induced diseases such as disturbance of consciousness, burning skin, disturbance of multiple organ functions (such as cardiovascular function, coagulation function, respiratory function, etc.) and even failure. The most dangerous type of heatstroke is heat apoplexy. Its fatality rate can be as high as 21 to 63%.

What are the types of heat apoplexy?

Classic heat apoplexy is more common in the following groups of people:

  • Children, infants, elderly people over 70 years old and other people with poor thermoregulation function.
  • Mental disorders, physical disabilities and other reasons make it impossible to leave the high temperature environment, replenish water or cool down in time.
  • People with neurological diseases, anhidrosis, obesity, cardiovascular diseases and other diseases.
  • Traffic police, sanitation workers and other people who need to work in a high temperature and high humidity environment for a long time.

Exertional heat apoplexy is more common in healthy young people who engage in high-intensity activities when the temperature and humidity are high.

How is heat apoplexy treated?

The treatment of heat apoplexy should take the following measures as early as possible:

  1. Cool down.
  2. Expand blood volume.
  3. Blood purification.
  4. Calm down.
  5. Tracheal intubation.
  6. Anticoagulation.
  7. Anti-inflammatory.
  8. Enteral nutrition.
  9. Dehydration prevents edema.
  10. Immunomodulatory.

In addition, patients are prohibited from surgery during the coagulation disorder.

The main treatment for heat apoplexy patients is rapid, effective and sustained cooling. Common cooling methods can use ice water bath, hypothermic blanket, ice water therapy and so on. Cold water immersion therapy is an efficient, non-invasive and rapid cooling method. It is often used in younger patients. However, it affects venous circulation and increases mortality in elderly patients, so elderly patients generally do not use this therapy.

Patients with heat apoplexy should not use large amounts of alcohol rubbing their body to cool down. Because when a patient has heat apoplexy, the blood vessels in their skin dilate. At this time, if a large amount of alcohol is used on the epidermis to cool down, the alcohol will be absorbed into the blood through the skin blood vessels and become toxic. Therefore, patients with heat apoplexy are prohibited from using large amounts of alcohol to cool down.

What are the medicines for heat apoplexy treatment?

Infusion: It is commonly used for intravenous infusion of Ringer's injection or 0.9% saline. However, the patient's urine output, cardiorespiratory function, and blood volume status should be assessed before fluid infusion, followed by rapid fluid resuscitation. Patients should avoid fluid overload conditions. In addition, patients should avoid large infusion of glucose injection in the early stage. It can cause a patient's blood sodium to drop rapidly over a short period of time. It can make nerve damage worse.

Ξ±-receptor agonists: Vasopressors such as epinephrine or norepinephrine may be infused in shock patients who are poorly resuscitated by infusion. However, Ξ±-receptor agonists also constrict the blood vessels of the skin and make external cooling measures less effective. Therefore, patients should try to avoid using them.

Sedatives: Cooling measures may cause shiver in the patient. The shivering process can exacerbate the condition by increasing the patient's endogenous heat production. Therefore, short-acting benzodiazepines such as lorazepam and midazolam may be recommended for intravenous administration during cooling measures to prevent or control shiver. The patient's core body cooling process can also be improved by benzodiazepines. Chlorpromazine may be considered if benzodiazepines are ineffective. However, the anticholinergic effects of chlorpromazine may induce or exacerbate the hypotensive complications of heat apoplexy.

Treatment of complications of heat apoplexy: Patients with heat apoplexy may develop respiratory dysfunction, hypotension, cerebral edema, cardiac insufficiency, electrolyte abnormalities and other related complications. Patients with these symptoms should be treated with corresponding drugs or other treatment methods.

Antipyretic and analgesic drugs are contraindicated: Drugs such as aspirin, acetaminophen, and ibuprofen have no effect on the hyperthermic state of patients with heat apoplexy. The cooling mechanism of antipyretic analgesics is by inhibiting the production of prostaglandins in the hypothalamus, so that the set point that regulates the central body temperature is down-regulated. However, the thermoset point in heat apoplexy patients did not change, so there was no efficacy. In addition, the common adverse reactions of antipyretic analgesics are the same as the common complications of heat stroke (such as disseminated intravascular coagulation, liver injury, acute kidney injury and gastrointestinal bleeding, etc.). These symptoms may be induced or exacerbated by use. 

0 comments:

Post a Comment

Welcome to leave your comment.Ω©(⚙α΄—⚙)ΫΆ

The latest article ヽ( ・◇・)οΎ‰

What are the functions of various B vitamins?πŸ”’πŸ”’πŸ”’

There are many kinds of vitamin B, such as vitamin B1, B2, B6, and B12. They all work in different ways and can relieve many different sympt...